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Khen a properly constructed molecular orbital cor- 
relation diagram for a thermally activated chemical 
transformation links all bonding levels in starting 
material TT ith bonding levels in product, the reaction 
is a symmetry-allowed process. Orbital symmetry 
relationqhips endow the reaction lvith a strong stereo- 
chemical bias: other things being equal, the sym- 
metry-allowed stereochemical alternative will be favored 
over a symmetry-forbidden one. Reactions, then, 
tend to occur with conservation of orbital ~ymmetry .~-4  

The fundamental simplicity and physical significance 
of these hypotheses have been partially obscured 
through differing understandings of what a concerted 
reaction is: too often concerted and allowed have 
been used as interchangeable synonyms. This Ac- 
count attempts to malie clear a distinction between the 
terms, and thus refute the mistaken supposition that 
all allowed reactions are concerted, and all forbidden 
reactions nonconcerted. 

Orbital Symmetry and State Conservation 
Reactions such as the thermally activated valence 

isomerizations of even-electron closed-shell hydro- 
carbons usually occur with high stereoselectivity in the 
sense predicted by orbital symmetry theoryS4 Cyclo- 
butenes, for instance, rearrange thermally to butadienes 
in a conrotatory fashion, it being the stereochemical al- 
ternative giving correlation between bonding molec- 
ular orbitals in reactant and product. 

More fundamentally, this stereochemical mode gives 
direct correlation between the most stable electronic 
states of starting material and product. The ground 
state of cyclobutene, with a molecular orbital configura- 
tion or level occupation given by 
with the ground configuration of bu 
the conrotatory mode 0nly.5’6 

The total activation energy for such processes may 
be small or large, depending on all contributing factors, 
but there is no orbital symmetry imposed barrier. The 
state correlation diagram for a reaction predicted to 
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be orbital-symmetry allowed is schematically a straight 
line (Figure 1). 

For the disrotatory cyclobutene opening, the ground 
state starts toward a correlation with a doubly ex- 
cited state of butadiene, x12xa2, but since states of 
like symmetry never cross, t’his correlation is avoided : 
ground states of reactant and product are directly 
correlated, at a higher energetic cost (Figure 2 ) .  

For every orbital-symmetry forbidden reaction thcrc 
is a theoretical opportunit’y for reaction to occur in a 
state-conservat’ive manner as in Figure 2 ;  but this 
possibility would be irrelevant’ if the state-conservative 
process had such a high activation energy that thermal 
act’ivsltion led instead to a state-crossing event,7 giving 
a triplet, open-shell diradical species as an intermediate 
which proceeded to one or a variety of products. 

But’ some orbital-symmetry-forbidden reactions 
might’ have such low activation energies for State- 
conservative processes that singlet-triplet state cross- 
ings would be precluded and even orbital symmetry 
allowed alternatives would be unable t o  compete ki- 
netically. Geometrical constraints can make some 
particular allomd reactions energetically prohibitive; 
the elect’roiiic features of certa,in molecules may eriablc 
them to convert to symmetry-forbidden products by 
one-step stat’e-conservative reaction profiles when t,his 
is energetically advantageous relative to altcrnativcs 
involving triplet diradical intermediates. Thus thc 
normal correspondences between facility and allowed- 
ness, and between allowed and one-step processes, arc 
not  absolute. 
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Figure 1. Electronic state correlation diagram for the orbital 
symmetry allowed conrotatory thermal isomerization of cyclo- 
butene to  butadiene. 

Figure 2. Electronic state correlation diagram for the orbital 
symmetry forbidden disrotatory thermal isomerization of cyclo- 
butene to  butadiene. 

Configuration Interaction and Chemical Reactivity 
The wave function for a closed-shell reacting system 

corresponding to the state correlation diagram of 
Figure 2 cannot be described at  all adequately by a 
single Slater determinant. Such a single configuration 
treatment would lead to the correlation of ground 
state of reactant with doubly excited state of product, 
which can never happen. A linear combination of 
two or more Slater determinants and the mathematics 
of configuration interaction provide a more accurate 
description, and avoid the crossing of two states of 
like symmetry, as the real molecules must. 

In  some respects the situation is similar to  the more 
familiar case where resonance involving two or more 
canonical forms must be taken into consideration. 
Approaching the transition state region of the thermal 
disrotatory and symmetry forbidden cyclobutene 
opening, the molecular wave function \E = C1 1 .  . . d- 
p2I + cZ 1 . .  , a21r*2 I is a fair approximation. (If 
the two determinants were built from self-consistent 
field orbitals, this simple two-term linear combination 
would be a very good approximation, since, according to 
Brillouin’s theorem, all matrix elements connecting 
ground configuration and singly excited configurations 
would be zero.) 

Symbolizing such a wave function through struc- 
tures has many advantages, as well as some pitfalls. 
We are currently utilizing the device shown below, 
giving the phase character of the doubly occupied 
molecular orbital highest in energy in the two closed- 
shell configurations, together with a configuration 
interaction (CI) modified resonance arrow. 

- 
I3 

A more trouble-free and less informal notational 
method will doubtless evolve. 

Calculations comparing the conrotatory and dis- 
rotatory modes in the thermal conversion of cyclo- 
butene to butadiene give a striking indication of how 
significant configuration interaction may be : the 
energy difference between the two stereochemical 
modes is 100 kcal/mol according to valence-bond es- 
timates,s 49 kcal/mol from self-consistent field cal- 
cu la t ion~,~  and only 13.6 kcal/mol when configuration 

interaction calculations are done on the SCF func- 
t i o n ~ . ~  

HJC 
1 

2 

Configuration interaction has been recognized by 
Schmidt’O as necessary to account for the facile ther- 
mal interconversion of 15,16-dimethyldihydropyrene 
(1) and 15,16-dimethyl[2.2]metacyclophane-4,9-diene 
(2). This reaction, formally a 6- or a 14-electron con- 
rotatory electrocyclic conversion, is thermally forbidden. 
It contains a symmetry-imposed barrier, for the highest 
occupied orbital of the reactant rises along the reaction 
coordinate toward an antibonding level of the product 
and crosses an antibonding orbital of opposite sym- 
metry which correlates with the H0140 of the product. 
The ground and doubly excited configurations based on 
these orbitals, however, cannot cross; the transition- 
state energy for the isomerization is estimated to be 
some 5 kcal/mol below the crossing point given by the 
molecular orbital calculations. lo 

h4olecules such as dihydropyrene and tetrahydro- 
pyrene’oa l1 derivatives have extended T systems and 
therefore low-lying electronically excited states, facil- 
itating configuration interaction and accounting for 
the low activation energy orbital symmetry disallowed 
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Figure 3. 
the  automerization of bicyclopentane (3). 

Abbreviated molecular orbital correlation diagram for Figure 4. 
the  automerization of bicyclopentane (3). 

Abbreviated electronic state correlation diagram for 

isomerizations they show. Indeed, a general rule has 
been proposed for thermal reactions whereby a low- 
lying excited state of the right symmetry is required 
for a low activation energy process.12 

The linear correlation we observed earlier13 for a 
series of cyclic olefins between their lowest ultraviolet 
electronic transitions and the activation energies of 
their thermal isomerizations may be taken as a further 
indication of reactions being facilitated by low-energy 
virtual orbitals. 

The bicyclo [2.1.O]pentane system provides another 
example in which single determinant wave functions 
are inadequate guides to chemical activity. 

3 3’ 

In  the ground state of 3, the C(l)-C(4) bonding 
orbital, symmetric with respect to the symmetry plane 
of the molecule, would be doubly occupied, and the 
corresponding antibonding and antisymmetric orbital 
would be unoccupied. Upon disrotatory ring-open- 
ing leading from 3 to a planar species, the +(S) orbital 
would increase in energy as +(A) decreased; they would 
be expected to cross, for in the planar form the anti- 
symmetric nonbonding orbital would be on the order 
of 0.5 eV lower in energy than the +(S) orbital (F’g ’1 ure 
3).14,15 

4 

The corresponding state correlation diagram would 
be as shown in Figure 4. The nonplanar activated 
complex and the planar intermediate would have singlet 
wave functions corresponding to linear combinations 
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of . . . .+(S)%$(A)O and . 4(S)04(A)2 configurations, 
as represented by structure 4. Thc partially flattcned 
bicyclopentane or thc planar intermediate could react 
in a manner appropriate to either type of C(1)-6(4) 
molecular orbital symmetry, for instaricc with an olefin 
in a cycloaddition reaction as a two-center two-clcotron 
A component or intramolecularly as an S orbital 
through collapse to bicyclopentane. An opportunity 
for “orbital inversion” is presented. but not rcquirc3d. 

Substitution of conjugating groups at C(1) and C(4) 
of a bicyclo [2.l.O]pentane slieleton would nialtc pos- 
sible “orbital symmetry inversion” a t  a le\b planar 
geometry, and lower the activation cnergy rcquired 
for either cycloaddition or the automerization of bi- 
cyclopentane.16 This is, we suggest. thr factor ac- 
counting for the smooth conversion of the tricyclic 
hydrocarbon 5 to the quadracyclane derivative 6 at 
100°17 when analogous systems lacking onc or both 
phenyl groups undergo reaction more sluggishly. 

6 

5 

The reaction 5 3 6 could wcll occur in a singlc <tcp 
without intervention of a 1,3-diradical triplet-state 
intermediate susceptible to  intramolecular trapping,l’ 
and without prior rearrangement of the cis,anti,cis 
tricyclic substrate 5 t o  the corresponding ciwyn,cis 
isomer.1ebr19 

Among mechanistic p ropods  for the facile thermal 
isomerization of cis-bicyclo [6.1.O]nona-2,4-6-tricnc t o  
cis-3a,7a-dihydroindene arc the two outlined in Schcmc. 
I.2o One or the other of the orbital-qymmetry 
forbidden steps given by dashed arrows in this scheme 
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Scheme I 

O C H .  

7 

8 9 

.. 
seems a necessary postulate; simple molecular or- 
bital analysis21 shows that a state-conservative and 
concerted isomerization, 8 * 10, is an excellent pos- 
sibility, while the alternative, 9 * 10, is hardly plaus- 
ible. The estimated energy at  the transition state, 
defined by the projected crossing of ground and doubly 
excited molecular orbital configurations, is 2.5 times 
higher for 9 * 10 than for 8 * 10. The extent to  
which the actual activation energies would be lower 
than these crossing points could be estimated through 
configuration interaction calculations, but a reversal 
of the energetic ordering of the two activated complexes 
is most unlikely. We therefore now favor 8 - 10 
in Scheme I as a reasoned and reasonable proposal 
and a possible break in the mechanistic opaqueness 
the rearrangement has sported over the past decade. 

The possible isomerization of [2.2.2]propellane (12) 
to 1,4-dimethylenecyclohexane (13) 2 2 , 2 3  represents an- 
other case where a symmetry-disallowed reaction 
may nevertheless occur in a facile and concerted man- 
ner, and where configuration interaction is essential 
for a decent theoretical treatment. 

12 

Conclusions 
The original Woodward and Hoff mann communica- 

tion2 did not mention the word “concerted” or the 
concept of “concertedness” ; neither does the most 
succinct and general formulation of their results, 
Chapter 4 in “The Conservation of Orbital Symmetry.”4 
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Figure 5 .  Energy us. reaction coordinate profiles for an energeti- 
cally concerted (above) and a nonconcerted process (below), 
one where an intermediate separates starting material and 
product. 

Yet, the page-1 formulation4 “orbital symmetry is con- 
served in concerted reactions” has made it seem that,  
somehow, concerted reactions and orbital symmetry 
theory formed an intimate and exclusive duality, 
each dependent solely on the other. 

When the term “concerted” is taken in an energetic 
sense, the energy profiles of Figure 5 may be viewed as 
representative of concerted and nonconcerted reac- 
t i o n ~ . ~ ~  Either profile may correspond to a symmetry- 
allowed reaction, for nothing in orbital symmetry 
theory requires the reaction profile to have a single 
maximum. Theory, rather, suggests that  in some 
symmetry-allowed processes such as the Cope rear- 
rangement there is a local energy minimum between 
reactant and p r o d ~ c t . ~ ~ ~ ~ ~  

For reactions that are orbital symmetry forbidden, 
yet state conservative, the same two reaction profiles 
may obtain: calculations for the dihydropyrene isom- 
erization 1 G 2 correspond to  the first alternative,1° 
those for the bicyclo[2.1.0]pentane inversion 3 $ 3’ 
to the second.27 

For state-conservative reactions, then, one cannot 
predict from the classifications “symmetry allowed” 
or “symmetry forbidden’’ whether a reaction will be 
concerted or not. The distinction between the two 
types of reaction profiles shown in Figure 5 may be 
attempted experimentally or theoretically, but not 
with absolute reliability through orbital-symmetry 
correlation diagrams alone. Orbital symmetry is 
conserved in some but not all concerted reactions, and 
not conserved in some but not all nonconcerted reac- 
tions. 
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While detailed configuration interaction calculations 
are complex, the qualitative consequences of configura- 
tion interaction and the import of state-correlation 
diagrams are quite uncomplicated and accessible. 

I n  some circumstances the dichotomy betiveen or- 
bital symmetry allowed and disallowed reactions may 
be more profitably rcplaced by a dichotomy based 
on how state-conservation may be achieved. Thus 
the rearrangements leading to dihydroindene treated 
above, 7 + 8 + 10 += 11, might be described as a 
sequence of three state-conservative isomerizations, 
[,2, + $2, + ,A1 (OS), [,% + .2,1 (CI), and [,2, + 
T2, + iT28] (OS). giving in each case the stereochemistry 
of utilization of the two-electron components and a 
label (OS or CI) for the way in which state conserva- 
tion may be realized. Tables giving orbital symmetry 
allon-ed and disallowed reaction types might be use- 
fully relabeled “state-conservative through OS” and 
“state-conservative through CI.” Compounds having 
no 1ow-enl.rgy OS-dominated state-conservative path, 
but having electronic structural features appropriate 
for a low activation energy conversion (describable 
through effective configuration interaction). might be 
expected to show the CI-dominated reaction path. 

The recognition of delocalization accompanying 
progress along a reaction coordinate as a great facil- 
itator of effective configuration interaction and thus 

a patron of state-conservative CI dominant processes 
may also provide an understanding of how calculations 
based on thermochemical data and radical models may 
be so successful in predicting activation energirs** even 
for hydrocarbon rearrangements that  seem to be en- 
tirely nonradical. Parallels between estimated radical 
stabilization and bond delocalization capacities for 
various subqtituents would not be surprifiing. 

Better calculations of reacting systems including 
configuration interaction, and a widcr appreciation of 
its energy-influencing and “orbital-symmetry invert- 
ing” manifestation, may contribute t o  a new itage 
of work on cycloreactions, one in which the concepts 
of orbital symmetry conservation and energetic con- 
certedness are separate and independent. Exper- 
iments testing for the energetic concertedness of rcac- 
tions and for the characteristics of short-lived singlet 
intermediates, suggeqted by this nen conceptual frame- 
work, may well prove rewarding. 
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The organic chemist, for all his modern sophistica- 
tion, remains fundamentally a maker of compounds. 
Heritage, training, and experience teach him that syn- 
theses of complex molecules are laborious and require 
construction of most of the bonds one a t  a time. This 
accounts, as much as any other factor, for his abiding 
fascination with concerted reactions, in which two or 
more bonds are made or broken simultaneously. 

The traditional criteria of concert follow directly 
from the idea that bonding of the reactive sites is main- 
tained throughout. Thus, the recovery of part of the 
cost of bond breaking by bond making should depress 
the activation energy below that expected for a rate- 
determining complete rupture of any of the relevant 
bonds of the reactant. Since the reactive sites must 
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remain in close proximity to preserve bonding, con- 
certed reactions would tend to be stereospecific. nlore- 
over, the same proximity requirement’ often would rc- 
sult in a low Arrhenius preexponential term or low en- 
t’ropy of activation because of the conversion of internal 
rotational to vibrational degrees of freedom in the 
transition state. 

Kat' many thermal reactions clearly satisfy both thc 
kinetic and t’he stereochemical crit’eria of concert. In  
the bimolecular group, perhaps the best known example 
is the Diels-Alder reaction,’ while the unimolecular 
cases include the cyclobutene += butadiene elcctro- 
cyclic reaction,2 the Claisen and Cope rearrangements, 
arid the ret,roene reaction that converts cis-2-methyl- 
1-vinylcyclopropane to cis-1 ,4-hexadieneS4 
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